当前位置:首页 教育资讯 射影定理的定义

射影定理的定义

发布时间:2018-03-09 16:30:06

直角三角形射影定理是直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。

在Rt△ABC中,∠ABC=90°,BD是斜边AC上的高,则有射影定理如下:

射影定理的定义

BD²=AD·CD

AB²=AC·AD

BC²=CD·AC

射影定理的定义

由古希腊著名数学家、《几何原本》作者欧几里得提出。

此外,当这个三角形不是直角三角形但是角ABC等于角CDB时也成立。可以使用相似进行证明,过程略。

射影定理的原理就是相似三角形的边长比相等。想要简单背诵就记好平方项是哪两条线段的比例中项,其中一条是射影。

因为射影就是将原图形的长度(三角形中称高)缩放,所以宽度是不变的,又因为平面多边形的面积比=边长的乘积比。所以就是图形的长度(三角形中称高)的比。

射影定理的定义

那么这个比值应该是平面所成角的余弦值。在两平面中作一直角三角形,并使斜边和一直角边垂直于棱(即原多边形图的平面和射影平面的交线),则三角形的斜边和另一直角边就是其多边形的长度比,即为平面多边形的面积比。将此比值放到该平面中的三角形中去运算即可得证。

面积射影定理:“平面图形射影面积等于被射影图形的面积S乘以该图形所在平面与射影面所夹角的余弦。”

COSθ=S射影/S原

(平面多边形及其射影的面积分别是S原,S射影,它们所在平面所成锐二面角的为θ)

温馨提示:
本文【射影定理的定义】由作者 临沂会学网网络科技有限公司 转载提供。 该文观点仅代表作者本人, 自学教育网 信息发布平台,仅提供信息存储空间服务, 若存在侵权问题,请及时联系管理员或作者进行删除。
(c)2008-2025 自学教育网 All Rights Reserved