当前位置:首页 教育立知 矩阵几何重数怎么算

矩阵几何重数怎么算

发布时间:2024-04-29 16:48:51

首先Aa=入a,(其中A为特征向量,入为特征值),则有(A-入E)a=0,把a看成是多元方程(A-入E)a=0的解,要a存在非零解,则必有(A-入E)的行列式为零,即det(A-入E)=0,这就是矩阵A的特征方程,特征方程的解就是特征根。

矩阵几何重数怎么算

相关介绍

由于方程会出现重根,所以对于一个“入”,其重根的次数叫做代数重数。解出入后,带入(A-入E)a=0按照高斯消元法的思路就可以求出矩阵A对于一个特征值“入”的特征向量,它可能是一个对于“入”的特征向量空间,而这个空间的维数就是他的几何重数(也就是解空间的维数)。以你的题目为例,其特征方程为det(A-入E)=(1-入)(1-入)(5-入)=0,那么1和5就是A的两个特征值,其中1的代数重数是2,5的代数重数是1,分别带入(A-入E)a=0,以1带入为例,线性方程的解空间为a=k1(0,-1,1)+k2(1,0,0),其中k1,k2任取,那么解空间的维数是2,即对于特征值1来说几何重数就是2.值得注意的是在讨论这些问题是,特征值会有很多个,但是几何重数,代数重数等问题都是对于某一个特征值而言的。

温馨提示:
本文【矩阵几何重数怎么算】由作者 无忧考研 转载提供。 该文观点仅代表作者本人, 自学教育网 信息发布平台,仅提供信息存储空间服务, 若存在侵权问题,请及时联系管理员或作者进行删除。
(c)2008-2025 自学教育网 All Rights Reserved