当前位置:首页 建筑知识 采用有限差分法进行导热过程数值计算时,可以有多种离散格式方式,下列不适用的方法是(  )。

采用有限差分法进行导热过程数值计算时,可以有多种离散格式方式,下列不适用的方法是(  )。

发布时间:2023-03-03 09:32:30

采用有限差分法进行导热过程数值计算时,可以有多种离散格式方式,下列不适用的方法是()。

A 、边界节点,级数展开法

采用有限差分法进行导热过程数值计算时,可以有多种离散格式方式,下列不适用的方法是(  )。

B 、边界节点,热量守恒法

C 、中心节点,级数展开法

D 、中心节点,热量守恒法

参考答案

【正确答案:A】

一般常用的离散格式方式有级数展开法和热量守恒法两种。中心节点这两种方法都可以,边界节点只适合热量守恒法,不适用级数展开法。

传热问题的有限差分法中主要采用什么方法

传热是指由于温度差引起的能量转移,又称热传递。由热力学第二定律可知,凡是有温度差存在时,热就必然从高温处传递到低温处,因此传热是自然界和工程技术领域中极普遍的一种传递现象。无论在能源、宇航、化工、动力、冶金、机械、建筑等工业部门,还是在农业、环境保护等其他部门中都涉及许多有关传热的问题。因此传热问题的有限差分法中采用有限差分法进行导热过程数值计算时,可以有多种离散格式方式,一般会采用以下三种方法:边界节点,热量守恒法。中心节点,级数展开法。中心节点,热量守恒法。

1有限差分法主要解决哪几类问题? 2差分格式主要有哪几种? 3中间差分是怎么来的

微分方程和积分微分方程数值解的方法。基本思想是把连续的定解区域用有限个离散点构成的网格来代替, 这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似, 积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组 , 解此方程组就可以得到原问题在离散点上的近似解。然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解。

在采用数值计算方法求解偏微分方程时,若将每一处导数由有限差分近似公式替代,从而把求解偏微分方程的问题转换成求解代数方程的问题,即所谓的有限差分法。有限差分法求解偏微分方程的步骤如下:

1、区域离散化,即把所给偏微分方程的求解区域细分成由有限个格点组成的网格;

2、近似替代,即采用有限差分公式替代每一个格点的导数;

3、逼近求解。换而言之,这一过程可以看作是用一个插值多项式及其微分来代替偏微分方程的解的过程(Leon,Lapidus,George F.Pinder,1985)

数值计算中的有限差分法

早期,在科学技术的发展过程中,理论分析和实验研究一直是两种主要的科学方法,但是随着计算机的出现与发展,情况就大大不同了,研究者可以采用计算机去计算过去那些根本不能求解的问题,模拟一些难以观测的现象, 第三种科学方法——数值计算诞生了。

有限差分法作为一种最为朴素的计算方法,发展时间也最为悠久,至今依然活跃。有限差分法的朴素思想就是,在求解连续性问题时,将时空域离散后,利用差商代替微商求解问题。

采用有限差分法进行导热过程数值计算时,可以有多种离散格式方式,下列不适用的方法是(  )。

从应用上看,有限差分法常使用在求解时间依赖问题(双曲型和抛物型方程),而有限元主要求解稳态问题(椭圆型方程)。从建立差分格式的方法上看,有限差分法既可以根据Taylor级数展开建立差分格式,也可以根据积分方法建立差分格式,其中,积分方法由于其本身的特殊性,也被单独称为有限体积法。

从微分方程建立差分方程,方法格式层出不穷,但三个基本性质确是核心所在, 即差分格式的相容性、收敛性和稳定性。

上述三个性质,通常是互相独立的,也就是相容的差分格式并不一定收敛。

通常,判断一个差分格式是否相容是简单的,只需要将微分方程光顺解带入差分方程再进行Taylor级数展开就可以得到截断误差,而截断误差是衡量相容性的重要标准。然而,判断一个差分格式是否收敛是复杂的。相容性和收敛性是差分格式本身的属性,而稳定性不仅与差分格式有关,还与离散的网格比大小有关。

实际问题中,如果研究一个差分格式的性质,需要从上述三个方面入手,这是麻烦的,能否将三个性质联系起来?特别是收敛性,能否有间接判断的依据?下面的定理给出了答案:

一般来说,证明一个差分格式的收敛性是困难的,而判断其稳定性则有许多方法,比如Fourier方法,von Neumann条件,Hirt启示性方法等等,其中应用最广泛的是von Neumann条件和其变形。

Neumann准则是十分重要的,其内容这里不再叙述,网上资料很多。但必须注意,Neumann条件是一个必要条件,下面两个定理说明了条件的充分性。

自此,差分格式的基本性质叙述完毕,有限差分法比起有限元来说理论简单不少,但是,真正活用理论解决实际问题是困难的。下面通过一个简单的双曲型对流方程说明这个问题。

一维常系数双曲型对流方程为:

为了求解这个方程,考虑其差分格式是最简单的方法,根据系数a的不同,有以下四种离散方法:

这是四种格式可能是最常用的,很多人实际使用时可能随便选一种就使用。这四种格式差距非常小,看(1)和(3)式,仅在空间离散时选取的点不同,那么它们的相容性、收敛性和稳定性如何呢?

首先,这四个格式都是相容的,至于收敛性和稳定性,采用von Neumann条件判断易知,格式(1)和(2)是条件收敛的,而格式(3)和(4)是完全不收敛的。如果采用后两种格式计算,是完全得不到正确结果的。其根本原因在于,上述的对流方程是双曲型的,沿其特征线方向是有信息传递的,因此,选取的网格点应该与双曲方程特征线一致才行,这也是上述(1)(2)格式被称为迎风格式的原因,要迎“风”不能背“风”。

下面这个格式被称为Richardson格式,从截差角度上说,这个格式是二阶精度的,似乎比迎风格式好,但是,这个差分格式实际完全没有实用价值,因为是不收敛的:

采用有限差分法进行导热过程数值计算时,可以有多种离散格式方式,下列不适用的方法是(  )。

通常来说,差分格式都是条件收敛,很少有绝对收敛的,比如Crank-Nicolson格式是绝对收敛的。当然,条件收敛不一定就差,绝对收敛也不一定就好,关键还是要满足需求条件才行。前面反复说到条件收敛,那么这个条件到底是什么,什么条件下差分格式才收敛?下面的定理回答了这个问题。

最后我们来谈谈上述对流方程初值问题的依赖区域,简单的说,为了计算某一层网格点的数值,需要用到上一层的数值,上一层的数值又需要用到上上一层,依次递推到第一层上。第一层上的这些网格点值,都会影响我们所计算的某点的值,这就是差分格式的依赖关系。而微分方程的依赖关系,如上述的对流方程,它是双曲型方程,因此它的依赖区域和特征线息息相关。实际上,上述对流方程是条件收敛的,这个条件最后化简就是:

得到的正是我们常在计算中使用的库朗条件。

上述理论是有限差分法的冰山一角,理论虽然简单,但是灵活运用却是格外复杂,越是简单的东西,使用起来越要小心,稍不注意,就会陷入不收敛的尴尬境地!!

温馨提示:
本文【采用有限差分法进行导热过程数值计算时,可以有多种离散格式方式,下列不适用的方法是(  )。】由作者 设备监理师考试 转载提供。 该文观点仅代表作者本人, 自学教育网 信息发布平台,仅提供信息存储空间服务, 若存在侵权问题,请及时联系管理员或作者进行删除。
(c)2008-2025 自学教育网 All Rights Reserved