管内受迫对流换热,当管内流速增加一倍时,表面传热系数增加比例最大的是()。
A 、层流
B 、过渡流
C 、紊流光滑区
D 、紊流粗糙区
【正确答案:D】
对于粗糙管,管内流动换热类比律表达式为,即。对于光滑管,若为紊流换热,则采用;若为层流换热,则采用的关联式为;若为过渡流换热,则应按照以下关联式来计算:。由以上几个关联式中Re数的指数可知,管内流速增加表面传热系数增加比例最大的是紊流粗糙区。
这个需要迭代。
先由150摄氏度作为定性温度来定空气的动力粘度28.95,密度0.835。求得流速62m/s,雷诺数为:2.14*10^5,湍流。
选择经验公式求得Nu,通过总传热系数来得到散热量。
根据散热量,求出出口温度,重新求定性温度,进行迭代。 这个一般来说收敛很快,应该做一到两次迭代就可以得到误差范围内的结果了。
——
管壳式换热器也称列管式换热器,是一种以封闭在壳体中管束的壁面作为传热面的间壁式换热器。管壳式换热器具有结构坚固、适应性强、选材广、易于制造及成本低等优点,在炼油、石油化工、医药、化工以及其他工业中广泛运用,他适用于冷却、冷凝、加热、蒸发和废热回收等各方面[1]。本文通过对影响传热系数的因素- 换热器结构、流体物理性质和污垢热阻等进行分析,以便在设计过程中合理调整结构参数使换热器提高化热性能,在换热器使用过程中合理维护防止换热性能恶化。
1· 传热系数
传热速率方程式[2]
Q = AKΔtm( 1)
式中 Q———传热速率( 冷、热负荷) ,W
A———传热面积,m2
K———总传热系数,W· ( m2·℃) - 1
Δtm———平均温差,℃
在传热量Q 和冷、热流体温差确Δtm的情况下,设法提高传热系数K 可减小传热面积A,即减小换热器的结构尺寸,这一点在工程应用上有重要经济意义。
在绝大部分的化工操作中,两个传热流体是不相互混合的,两流体间的传热是通过管壁进行的。热流体向冷流体传递热量需经过三个过程。即热量通过层流底层的传热过程,热量通过间壁传热的过程,以及热量通过冷流体的层流底层的传热过程[1]。在化工操作过程中,随着时间的推移,作为冷、热流体的介质往往会在传热间壁的两边结垢,这种污垢的存在会影响传热。由于污垢的厚度和导热系数难以获得,因此,在工程一般用一个系数( 污垢热阻) 来计污垢对传热的影响。故传热系数可以用下式计算
2 ·传热系数的影响因素
Nusselt 准数关系式
对于一定的传热面和流动情况,当Re 和Pr 确定后,强制对流式的Nu 也就被决定。强制湍流下对流传热系数的准数关系式[2]
2. 1 列管换热器结构
对流传热是流体主体中的对流和层流底层中的热传导的复合现象。任何影响流体流动的因素( 引起流动的原因、流动型态和有无相变化等) 必然对对流传热系数有影响[2]。Reynolds准数表示惯性力和粘滞力之比,是表征流动状态的准数。
2. 1. 1 换热管规格
换热管可选择外径规格在Φ14 ~ Φ57 mm 之间标准管。由于小直径换热管具有单位体积传热面积大,换热器结构紧凑,金属耗量少,传热系数高的特点,在换热器结构设计中,对于管程介质清洁、不易结垢的介质,采用小管径管束能有效增加换热面积。在换热面积相同条件下,采用Φ19 mm 管束比采用Φ25 mm 管束提高流体流速约30%,从而增加了湍流程度。
2. 1. 2 管子布局
标准换热器设计规范中规定了四种排列角度。30°和60°排列紧凑,相同壳径下可获得较大传热面积,具有较高的换热系数,但压降较高,且不利于机械清洗。而45°和90°排列适用于需要机械清洗的场合,且压降较小。从传热效果及压降角度分析90° > 45° > 60° > 30°,其中30°和45°使用较多,采用30°排列可以比45°多排列约17%的换热管[3]。根据换热器设计规范要求,管间距t( mm) 不应小于1. 25 倍管外径,常用的管间距有25 mm( Φ19) 和32 mm( Φ25) 。
2. 1. 3 管程数
为增加换热面积,必须增加换热管数量N,而介质在管束中的流速随着换热管的增加而下降,结果反而是流体的传热系数降低,故增加换热管不一定达到所需换热要求。因此要保持流体在换热管束中较大流速可将管束分成若干程数,使流体依次通过各程换热管,以增加流体流速,提高对流传热系数[4]。换热器常用推荐流速范围见表1。
2. 1. 4 壳程内径
换热器通常采用多管程结构,壳程内径可根据经验计算
2. 1. 5 折流板
为增进对壳程流体的扰动、提高壳程流体的对流传热系数,同时支撑换热管束以防止其挠曲变形,在列管式换热器的壳程通常设置有折流挡板,常见有弓形折流板、矩形折流板和圆盘—圆环形折流板,其中以圆缺形( 又称单弓形) 的构造最简单、对壳程流体的扰动最剧烈、支撑效果最佳,标准列管换热器中多采用此种。国内换热器设计标准规定折流板间距B( mm)最小为1 /5 壳程直径,且不小于50 mm。建议切割部分高度在0. 2 ~ 0. 45 倍壳体内径,通常选择切割率为20% ~ 25%。
通过式( 8) 可以看出减小折流板间距B 和壳程内径D 可以减小壳程流通截面积So,即在流量一定的条件下提高壳程流速,加强扰动。
2. 1. 6 折流杆
传统的装有折流板的管壳式换热器存在着影响传热的死区,流体阻力大,且易发生换热管振动与破坏。为了解决传统折流板换热器中换热管的切割破坏和流体诱导振动,并且强化传热提高传热效率,近年来开发了一种新型的管束支承结构—折流杆支承结构。
2. 2 换热管材质及厚度
换热管常用材料常用的为碳钢、低合金钢、不锈钢、铜、铜镍合金、铝合金等。由于物质导热系数和物质的组成、结构、密度、压力和温度等有关,在工作压力、温度、介质腐蚀性等条件满足的情况下选择导热系数与壁厚比值较大者,即减小壁间传热导热热阻,提高传热系数。
2. 3 流体物理性质
导热系数、粘度、比热、密度等对对流传热系数α 的值影响也比较大。
Prandtle 准数表示速度边界层和热边界层相对厚度的一个参数,反映与传热有关的流体物理性质。
2. 4 污垢热阻
污垢热阻表示换热设备传热面上因沉积物而导致传热效率下降程度的数值,即换热面上沉积物所产生的传热阻力,又称污垢系数,指换热器换热表面上积有某种污垢( 如水垢、污泥、油污和烟灰等) 。污垢热阻的逐步形成,必将导致换热器传热系数的相应减小,促使换热器的传热性能日益恶化。对于容易结垢的介质,尽量提高流体流速,换热器间壁应定期清洗,以防止传热系数K 值的明显下降。
3 ·强化传热技术
对于管壳式换热器,强化传热[5 - 6]方法按是否消耗外加功率可分为有源技术( Active Technology ) 和无源技术( PassiveTechnology) ,前者消耗外加能量,后者不消耗能量。后者主要是使传热壁面的温度边界层减薄或调换传热壁面附近的流体。主要有2 种实施途径[7 - 10] ( 1) 对传热表面的结构、形状适当加以处理与改造( 2) 在传热面或传热流路上设置湍流增进器,或在流体中加入添加剂,特别是加入适当的固体颗粒,不仅强化传热,还可以防垢和除垢。
4· 结论
( 1) 合理设计换热器结构,对实现工艺过程、提高传热效率、节省能源及降低设备投资等方面有重要意义。因此,设计换热器时应反复计算,综合分析,不断调整优化换热器结构,从而进一步提高整体传热效果,以获得满足工艺要求的最优结果。
( 2) 传热系数K 总是接近于α 小的流体的对流传热系数,且永远小于α 的值。因此传热系数K 受α 小的一侧控制。
( 3) 如传热间壁上的污垢很厚时,污垢热阻会大大降低设备的传热效果。因此容易结垢的介质,换热间壁应定期经常清洗,以防止换热器换热效果恶化。
如何强化传热技术及一些典型的应用论文摘要:本文阐明了强化传热技术的重要性及其发展趋势;包括强化传热的分类、强化传热的途径、强化传热的应用场合等;列举了一些强化传热的典型应用,包括表面增强型蒸发管、采用波纹换热管管内强化传热、采用超声波抗垢强化传热技术、采用螺旋槽管的强化传热技术、采用小热管的强化传热技术等。通过分析得出强化传热应注意的一些问题。论文关键词:强化传热 典型 应用 由于生产和科学技术发展需要强化传热从80年代起就引起了广泛的重视和发展。表现在设计和制造各类高性能热设备,航空,航天及核聚变等尖端技术,计算机里密集布置电子元件的有效冷却。正是上述原因促使人们对强化传热进行及为广泛的研究和探讨,从80年代到现在近20多的时间里,世界各国的科学领域里,有关强化传热研究报告举不胜数。
一、强化传热技术的分类(一)导热过程的强化 导热是热量传递的三种基本方式之一,它同样也存在着强化问题。导热是依靠物体中的质量(分子,原子,或自由电子)运动来传递能量。固体内部不同温度层之间的传热就是一种典型的导热过程,但固体之间接触存在着接触热阻,降低了能量的传递,在高热流场合下,为了尽快导出热量必须设法降低接触热阻,一般可采用以下方法: 1、提高接触面之间光洁度或增加物体间的接触压力以增加接触面积 2、在接触面之间填充导热系数较高的气体(如氦气) 3、在接触面上用电化学方法添加软金属涂层或加软技术垫片 (二)辐射换热的强化 辐射换热普遍存在于自然界和许多生产过程中,只要物体温度高于绝对零度,它就能依靠电磁波向外发射能量,所以物体之间总是存在着辐射换热,在物之间温度差别不是很大的情况下,辐射换热可以忽略,但在高温设备中辐射却是换热的主要方式。而影响辐射换热的因素主要有:表面粗糙度,固体微粒,材料。 (三)对流换热强化 对流强化传热与流体的物理特性,流动状态,流道几何形状,有无相变发生以及传热壁面的表面状况等许多因素有关。其中对流换热的有源强化又可分为:利用机械搅动加强流体与壁面间的传热,流体脉动和传热面震动时的对流换热,电磁场作用下的对流换热,经过多孔壁有质量透过时的壁面换热。而对流换热的无源换热又可分为:管内插入物对传热的增强,涡旋流动的强化传热,添加物对流换热,流化床与埋管间的传热,射流冲击。 二、强化传热的途径在热设备中应用强化传热技术的目的一般有:
(1)增加输热量;
(2)减少换热面积和缩小设备体积;
(3)降低载热剂输送功率的消耗;
(4)降低高温部件的温度。在表面式换热器中,单位时间内的换热量Q与冷热流体的温度差△t及传热面积F成正比,即Q=KF△t,式中K为传热系数,是反映传热强弱的指标。从上式可以看出,增大传热量可以通过提高传热系数,扩大传热面积和增大传热温差3种途径来实现。
三、应用场合不同的强化传热技术有不同的应用场合:对流换热按其发生的原因可分为自然对流换热和强制对流换热。在这良种对流换热过程中,就流体的.运动状态又可区分为层流换热及湍流关热,这取决于流体的雷诺数,流道集合形状和固体的壁面状况。从流道集合想状来看就更为复杂,既有圆形,环形,三角形,弧形,又有纵向或横向掠过管簇以及由各种形状管翅或板翅结构组成的复杂集合通道。如果流体在穿热过程中发生相变,则又有迟内沸腾,流动沸腾及蒸汽凝结之分。 前面提到的那些强化传热技术,有的只使用于特定的某些传热介质和传热过程,有的则对所有对流换热状态都有不同程度的强化作用。其中在各类通道中强制对流(包括层流及湍流)换热的强化研究得最多,因而也是最成熟的和在工业上应用的最广的。从强化传热各类措施来看,研究得最多的是各种发展表面,粗糙表面和涡旋强化,而且它们还被广泛地应用于各类热设备中去。就目前来看,应用最多的是换热器方面的强化传热。当然其他电子方面也有很多。
四、强化传热的应用举例(一)表面增强型蒸发管 采用双侧强化管型,管内侧有内螺纹槽,管外侧是一种利用机械加工的双重凹陷多孔结构,管型的机构其总传热系数随着流速的增大而增大,当管内水流速为0.3~1.3m/s时,主翅和内翅的翅高分别为0.70mm和0.48mm,翅数分别为52和38时,增大了换热面积,管表面更多的凹陷增加了汽化核心数量,其换热性能最为优越。 (二)采用波纹换热管管内强化传热 用波纹管代替传统的光滑直管,能大大强化热量传递。分别在实验环境温度20度,管程水流量40-1400L/h,雷诺数Re=1800 -24000,蒸汽压力为0.15MPa,蒸汽温度为113.5度;实验环境温度20度,管程水流量范围40-1400L/h,雷诺数Re=1800-24000,蒸汽压力为0.15MPa,蒸汽温度为113.5度。在实验Re变化范围内,波纹管的管内对流传热系数a和努塞尔数Nu均随着Re的增大而增大,并且都比光滑直管大2.5-3倍。(三)采用超声波抗垢强化传热技术 超声波在液体媒质中传播时会产生机械振动作用,空化作用和热作用。这些作用同时产生效应,会减弱成垢物质的分子之间结合力以及析出垢粒与管道间的附着力,破坏垢物生成和板结的条件,阻止垢物的生长,从而实现防垢的功能。同时也可导致已形成的垢物脱落,形成松散而不易板结的沉淀物,达到除垢作用。超声波抗垢装置主要由超声波发生器,传声系统和换能器组成。石油大学等人的研究表明循环动态情况下与静态情况下的结垢程度相当;声波的防垢作用是很明显的,其防垢效率最低达85%,比通常的化学防垢效果还搞,如果实验条件加以改进其效果会更好。 前苏联科学家研究发现,当声强大于15W/m2时,超声波可使积垢系数(垢层热阻于总热阻之比)降低并做到整个生产期不用清洗。中国蓝星化学清洗总公司研究得出:超声波有明显的阻垢功效,施加20kHZ的声波可使钙离子和碳酸根离子的结合过程变得很缓慢,阻垢率达到85%以上。 (四)采用螺旋槽管的强化传热技术 周强泰等人通过对螺旋槽管管内外单相流体传热进行研究,并将试验数据按流动参数,物性参数和几何参数采用无量纲准则进行整理,给出了Re=104-105范围内换热系数的关联式,该关联式可以作为螺旋槽管换热器的设计依据。螺旋槽管代替光管作空气预热器,可减轻末级空气预热器的积灰,提高传热能力,因而可降低排烟温度及提高热风温度;可以代替回转式空气预热器,解决其漏风和积灰问题,此外还可根据不同的具体情况解决锅炉的一些特殊问题。螺旋槽管作为电站锅炉空气预热器的传热管件,大量应用与现役煤粉锅炉空气预热器的更换改造和新型的整套设计,其性能明显比其他型式空气预热器优越。 (五)采用小热管的强化传热技术 对五种内径相近的小热管在不同工作温度,热流密度及倾角下的传热研究,五种热管带有不同吸液芯结构:微粒管,网芯管,加网芯槽管烧结芯管,光管。五种热管的蒸发传热系数都随工作温度的升高而增加;随着倾角的增大而增大;微粒管和网芯管的传热系数基本上随热流密度的增大而增加,而加网芯管微粒管,烧结芯管和光管则随热流密度的增加而逐渐减小。有吸液芯的四种热管都不同程度地强化了管内蒸发和凝结换热,其中,微粒管的传热系数最高,而且对倾角的变化敏感,大倾角时约为光管的9倍,小倾角约为光管的14倍;加网芯管微粒管的凝结强化效果最好,其传热系数可达光管的15倍。 五、强化传热应该考虑的问题(一)采用强化传热措施所获得的设备功率的增加和系统热效率的提高,或者设备体积减小,传热介质输送功率降低等效果究竟有多大? (二)采用所选择的强化传热措施后需要增加多少费用?工艺复杂性怎么样?能否大规模生产? (三)所采用的强化传热方法与传热介质的相容性如何?能否保证强化传热性能持久有效? (四)采用强化传热措施后能收到多大的经济效益?六、总结大多数强化传热方法都能有效地提高传热系数,能起到很好的强化传热的目的,但各种方法都有其最合适的应用场所,需根据具体的问题采用不同的强化方法,作到最优化的强化传热。对于任何一种新的强化传热技术,仅停留在理论上的研究是不够的,还应对其应用领域进行深入的了解,调查和研究,并掌握有针对性地解决存在问题的方法,才能在实践中得到推广应用。 相关论文查阅:大学生论文、工商财务论文、经济论文、教育论文 热门毕业论文