已知p、q均为质数,且满足5p2+3q=59,由以p+3、1-p+q、2p+q-4为边长的三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形
∵5p2+3q=59为奇数,
∴p、q必一奇一偶,
∵p、q均为质数,
∴p、q中有一个为2,若q=2,则p2=535不合题意舍去,
∴p=2,则q=13,
此时p+3=5,1-p+q=12,2p+q-4=13,
∵52+122=132,
∴5、12、13为边长的三角形为直角三角形.
故选B.
535
有理数的定义:有理数是整数和分数的统称,一切有理数都可以化成分数的形式。